
Avoiding Random Oracles in Bowe–Gabizon

SNARK Verification

Vanishree Rao and Izaak Meckler

O(1) Labs

May 2019

1 Introduction

This note describes a modification of the Bowe–Gabizon simulation-extractable
SNARK [2] (hereafter, we will refer to the Bowe–Gabizon SNARK as the BG18
SNARK with the following additional property: Given a BG18 proof π, we can
easily compute a merely knowledge-sound SNARK which is more efficient to
verify in certain contexts.

Specifically, consider the following execution environments, which have differ-
ing security requirements and efficiency characteristics:

• Environment 1: Simulation-extractability of proofs is required and in-
voking a random oracle is inexpensive.

• Environment 2: Simulation-extractability of proofs is not required (i.e.,
knowledge-soundness is sufficient) and invoking a random oracle is expen-
sive.

The BG18 construction gives a SNARK whose proofs can be efficiently verified
in both environments. That is, if one is willing to use a random oracle, one can
get a simulation-extractability guarantee about a given proof, while at the same
time a proof can be checked “up to knowledge-soundness” without having to
invoke a random oracle.

To further motivate the construction, let us describe the two environments as
they occur in the Coda protocol [1]. The first environment corresponds to the
normal execution of a CPU (where random oracle instantiations like blake2 are
efficient) verifying another party’s proofs from the network.

The second environment corresponds to verifying proofs within a rank-1 con-
straint system while performing proof composition. In our context, simulation-
extractability is not important here while random oracle instantiations like
blake2 are very inefficient to implement.

1

For an intuitive summary of the construction, note that the BG18 SNARK is
a modification of the Groth’s simulation-sound SNARK [3] (hereafter, we will
refer to the Groth’s SNARK as the Groth16 SNARK) in two ways:

1. In the Groth16 SNARK, the common random string (CRS) contains a
gδ term which is used at multiple points of computing a snark. The
modification is that wherever gδ is used, it is replaced with gδ

′
for δ′ = dδ

for some scalar d known to the prover.

2. Provide an additional argument of knowledge of d.

Our modification pertains specifically to the second item above. Specifically,
we present a simplified argument of knowledge of the discrete log. While the
BG18 version used a fresh random group element in constructing the DL argu-
ment of knowledge (namely, the output of a random oracle on the part of the
proof resulting from the first item above), we will use a uniformly random but
fixed group element.

2 Notations and Definitions

Notations.

• We denote that an element s is sampled uniformly at random from a set
S by s← S.

• We denote that a probabilistically polynomial-time algorithm A runs on
an input x with random coins r and outputs y by y ← A(x; r). Often, we
omit specifying r.

• Like in [3], we write (y; z)← (A||E)(x) when A on input x outputs y, and
EA on the same input (including random coins) outputs z.

Quadratic Arithmetic Programs. Like in [3], we use QAPs as a model of
computation. Specifically, we will consider a degree n and size m QAP, Q =
({ui(X), vi(X), wi(X)}mi=0, t(X)) with a corresponding relationR = {((a1, . . . , a`),
(a`+1, . . . , am))} ⊆ F` × Fm−` such that, with a0 = 1,

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X)

for some n− 2 degree quotient polynomial h(X), where n is the degree of t(X).

NIZK Argument of Knowledge. A NIZK argument of knowledge consists
of the following set of algorithms.

2

(σ, τ)← Setup(R) : Setup, on input a relation R, outputs a common reference
string σ and a trapdoor τ .

π ← Prove(R, σ, φ, ω) : Prove takes as input (φ, ω) ∈ R, besides R, σ, and out-
puts a proof π.

acc/rej← Vf(R, σ, φ, π) : Vf takes as input R, σ, φ, π and outputs the accept
symbol acc or the reject symbol rej.

π ← Sim(R, σ, τ, φ) : Sim takes as input R, σ, τ, φ and outputs a proof π.

Definition 1 (NIZK Argument of Knowledge) A system (Setup,Prove,Vf,
Sim) is a perfect non-interactive zero-knowledge argument of knowledge for rela-
tion R if it has perfect completeness, perfect zero-knowledge and computational
knowledge soundness as defined below. Let R = {Rλ}λ∈N be the set of all
polynomial-time decidable binary relations

Perfect completeness. Completeness says that, for any given true statement,
an honest prover knowing its witness should be able to convince an honest
verifier. For all λ ∈ N, R ∈ Rλ, (φ, ω) ∈ R,

Pr[(σ, τ)← Setup(R);π ← Prove(R, σ, φ, ω) : Vf(R, σ, φ, π) = acc] = 1

Perfect zero-knowledge. An argument is zero-knowledge if it does not leak
any information besides the truth of the statement. We say (Setup,Prove,Vf,
Sim) is perfect zero-knowledge if for all λ ∈ N, R ∈ Rλ, (φ, ω) ∈ R, and
all adversaries A,

Pr[(σ, τ)← Setup(R);π ← Prove(R, σ, φ, ω) : A(R, σ, τ, π) = 1]

= Pr[(σ, τ)← Setup(R);π ← Sim(R, τ, φ) : A(R, σ, τ, π) = 1]

Computational knowledge soundness. The system is said to be knowledge
sound or an argument of knowledge if there is an extractor that can com-
pute a witness whenever the adversary produces a valid argument. The
extractor gets full access to the adversary’s state, including any random
coins. Formally, it is required that for all non-uniform polynomial time
adversaries A there exists a non-uniform polynomial time extractor E such
that,

Pr[R← Rλ; (σ, τ)← Setup(R); ((φ, π);ω)← (A||EA)(R, σ)

(φ, ω) 6∈ R and Vf(R, σ, φ, π) = acc] ≈ 0

3 Constant-base-DL-proof BG18

In this section we describe a variant of the BG18 SNARK. Noting that BG18
had Groth16 as its starting point, we too shall present our construction as a

3

variant of Groth16 for readability. The proposed SNARK is specified by the
following algorithms.

We will denote the Groth16 SNARK system by (Setup(1),Prove(1), Vf(1),Sim(1)).

We will denote a DL non-interactive argument of knowledge by (Setup(2),Prove(2),

Vf(2)). We highlight the parts differing from the Groth16 SNARK in blue.

(σ, τ)← Setup(R) :

Run (σ(1), τ (1)) ← Setup(1)(R). Also, run (σ(2), τ (2)) ← Setup(2)(R). Set
σ = (σ(1), σ(2)) and τ = (τ (1), τ (2)). Output (σ, τ).

Recall that σ(1) is of the following form: σ(1) = ([σ1]1, [σ2]2), where

σ1 =

(
α, β, δ, {xi}i∈[0...2n−2], {αxi}i∈[1...n−1], {βxi}i∈[1...n−1]{

βui(x)+αvi(x)+wi(x)
δ

}
i∈[`+1...m]

,
{
xit(x)
δ

}
i∈[0...n−2]

)

and
σ2 =

(
β, δ, {xi}i∈[0...n1]

)
π ← Prove(R, σ, (a1, . . . , a`), (a`+1, . . . , am)):

1. Choose d← F∗p uniformly at random. Define δ′ = dδ.

2. Choose r, s← F∗p uniformly at random and compute π(1) = ([A]1, [B]2,
[C]1, [δ

′]2), where

A = α+

m∑
i=0

aiui(x) + rδ′

B = β +

m∑
i=0

aivi(x) + sδ′

C =

m∑
i=`+1

ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ′
+As+Br − rsδ′

3. Compute π(2) = Prove(2)(σ(2), ([δ]2, [δ
′]2), d).

Output π = (π(1), π(2)).

acc/rej← Vf(R, σ, (a1, . . . , a`), π):

Parse π = (π(1), π(2)) and π(1) = ([A]1, [B]2, [C]1, [δ
′]2) and check that

[A]1 · [B]2 = [α]1 · [β]2+
∑̀
i=0

ai

[
βui(x) + αvi(x) + wi(x)

γ

]
1

· [γ]2+[C]1 · [δ′]2

(1)
and

Vf2(σ(2), ([δ]2, [δ
′]2), π(2)) = acc (2)

4

π ← Sim(R, σ, τ, (a1, . . . , a`)):

1. Choose d← F∗p and compute δ′ = dδ.

2. Create σ′1 by replacing δ in σ1 with δ′.

3. ([A]1, [B]2, [C]1)← Sim1(σ′1).

4. compute [δ′]2 and set π(1) = ([A]1, [B]2, [C]1, [δ
′]2).

5. Compute π(2) = Prove(2)(σ(2), ([δ]2, [δ
′]2), d).

6. Output π = (π(1), π(2)).

4 Proof of Security

Theorem 1 The variable-δ Groth16 system is a non-interactive zero-knowledge
argument with perfect completeness and perfect zero-knowledge. Assuming that
the knowledge of exponent assumption holds, it has statistical knowledge sound-
ness against adversaries that only use a polynomial number of generic bilinear
group operations.

Proof: It is easy to see that the system satisfies perfect completeness.

Perfect zero-knowledge. Note that the second part of the proof is not zero
knowledge in d. However, intuitively, the additional random elements r, s in
A,B render them distributed uniformly random subjected to satisfying the first
verification equation with C. In fact, Sim first samples d and then computes the
other elements of the proof accordingly. It is easy to see that the distribution
of Sim’s output is identical to that of Prove.

Statistical knowledge soundness. As shown in [3], it suffices to show that
for the corresponding proof system with only the exponents, the system is sta-
tistically knowledge sound against affine adversarial prover strategies. We will
now show that for any such adversarial prover A, we can extract the witness
with non-negligible probability.

Firstly, we will argue extractability of d. Then, we will argue that the ele-
ments in σ(1) that are not in [3] do not unduly “help” the adversarial prover
in computing a proof. Finally, we briefly argue how the proof of security in [3]
completes the rest of our proof.

Extractability of d. Since (Setup(2),Prove(2),Vf(2)) is an argument of knowl-
edge, for every adversarial prover, there exists an extractor E(2) that can extract
from the prover the discrete log d of [δ′]2 with respect to [δ]2. Hence, going for-
ward, we can replace all the arguments where δ′ is involved with dδ where d is
known. This implies that d can simply be baked into the scalars of the equations

5

of affine relations considered in [3], such as Equation (3) below; hence, similar
arguments hold true for the proposed proof system too.

Prover cannot use additional CRS terms. Since A performs only affine
operations on the elements in the CRS, we have

A =Aαα+Aββ +Aδδ +Aα(x)α+Aβ(x)β +A(x)

+

m∑
i=`+1

Ai
(βui(x) + αvi(x) + wi(x))

δ
+At(x)

t(x)

δ
(3)

where, Aα, Aβ , Aδ, Ai are known field elements, Aα(X), Aβ(X) are known n−1
degree polynomials without the constant term, A(X) is a known 2n− 2 degree
polynomial and At(X) is a known n− 2 degree polynomial.

Parse A(X) = Alow(X)+Ahigh(X), where Alow(X) contains all the terms with
degree i ≤ n− 1.

A majority of the proof is similar to [3], except that we need to account for new
terms in the CRS, namely, {xi}i∈[n...2n−2], {αxi}i∈[1...n−1] and {βxi}i∈[1...n−1],
that were not in the CRS in [3].

We will use the following terminology like in [3]. We will consider monomials
that are quotients of two monomials; e.g., x

δ . By M ∈ A, we denote that the
monomial M appears with non-zero coefficient when A is written as a unique
non-linear combination of the monomials in α, β, δ, x.

Since αβ 6∈ σ(1) and αβ 6∈ σ(2) and since αβ ∈ AB, we have that either
α ∈ A, β ∈ B or α ∈ B, β ∈ A; let α ∈ A, β ∈ B without loss of generality.
Hence, Aα = 1, Bβ = 1, Aβ = 0, Bα = 0.

Now we will show by contradiction that Aα(X), Aβ(X), Bα(X), Bβ(X) are
zero polynomials. If αAα(X) ∈ A, then since β ∈ B, αβAα(X) ∈ AB. De-
noting the three terms on the right hand side of the first verification equa-
tion (namely, Equation (1)) as T1, T2, T3 respectively, we have that clearly
αβAα(X) 6∈ T1 since Aα(X) has no constant term and clearly αβAα(X) 6∈ T2.

Thus, αβAα(X) ∈ T3 which implies that αβAα(X)
δ ∈ C, which is a contradiction,

since αβxi

δ is not in the CRS and hence the adversary could not have computed
such a C. Hence, Aα(X) is a zero polynomial. Similar arguments show that
Aβ(X), Bα(X), Bβ(X) are also zero polynomials.

Next, we will show by contradiction that the adversary cannot use {xi}i∈[n...2n−2]
with non-zero coefficients while constructing its proof. Assume for contradiction
that xi ∈ A for some i > n − 1. Since β ∈ B, we have that βxi ∈ AB, which
implies that it has to be in one of T1, T2, T3. However, clearly βxi 6∈ T1 and
since only powers of x lower than n make up T2, we have that βxi 6∈ T2. Also,

if βxi ∈ T3 then βxi

δ ∈ C, which is a contradiction since βxi

δ occurs in the CRS
only for i ≤ n− 1.

6

Witness extractability. Having proven that the additional items in the CRS
do not unduly facilitate a prover and that d is extractable, witness extractability
of the proposed system follows from that of Groth16 by simply absorbing d into
the scalars of the affine relations considered in the security proof of Groth16.

�

5 An Instantiation of DL Non-interactive Argu-
ment of Knowledge

A non-interactive argument of knowledge is an argument system similar to a
non-interactive zero-knowledge argument of knowledge defined in Definition 1,
except that it does not need to satisfy the zero knowledge property. Specifically,
a non-interactive argument of knowledge needs to satisfy perfect completeness
and computational knowledge soundness.

We focus on proving knowledge of discrete log of an element in G2 of a bilinear
group, which will be useful in the proposed Variable-δ Groth16 SNARK. We pro-
pose to use the following simple discrete log non-interactive argument of knowl-
edge, which simply involves exponentiating the same discrete log on a different
random group generator. Specifically, the DL AoK (Setup(2),Prove(2),Vf(2)) is
described as follows.

(f1, f2)← Setup(2)(p,G1, G2, GT , e, g1, h2): On input a bilinear group descrip-
tion (p,G1, G2, GT , e, g1, h2), where g1, h2 are random generators ofG1, G2,
respectively, sample r ← Z∗p and compute f1 = gr1 and f2 = hr2. Output

σ(2) = (p,G1, G2, GT , e, g1, h2, f1, f2).

π(2) ← Prove(σ(2), x, d): Upon input the CRS, a statement of the form x = hd2
and the discrete log d ∈ Z∗p of hd2 with respect to h2, compute fd2 and

output π(2) = fd2 .

Vf(σ(2), x, π(2)): Upon input the CRS, a statement and a proof, output acc if
e(f1, h

d
2) = e(g1, f

d
2) and rej otherwise.

Remark 1 When instantiating the proposed SNARK with the above DL argu-
ment of knowledge, the Setup algorithm takes as input the same bilinear group
description as used in the first part of the proposed SNARK, except that, in-
stead of g2, it takes h2 = gδ2 as the generator for G2, since knowledge discrete
log needs to be proven with respect to h2 in the proposed SNARK.

The proof of security follows in a straight-forward manner from the following
knowledge of exponent assumption.

Assumption 1 The knowledge of exponent assumption holds for G if for ev-
ery non-uniform probabilistic polynomial-time adversary A there exists a non-

7

uniform probabilistic polynomial-time extractor E so that

Pr[(p,G1, G2, GT , e)← G(1λ);

h1 ← G1 \ {11};h2 ← G2 \ {12};
k ← Z∗p;K1 ← hk1 ;K2 ← hk2 ;

Set ρ := (p,G1, G2, GT , h1, h2,K1,K2);

(C2, D2; d)← (A||E)(ρ) : D2 = Ck2 and C2 6= Kd
1] ≈ 0

Theorem 2 Suppose that the knowledge of exponent assumption holds in a bi-
linear group. Then, (Setup(2),Prove(2),Vf(2)) is a DL non-interactive argument
of knowledge for discrete logarithm of elements in G2.

Proof: Perfect completeness is straight-forward to observe. Extractability also
directly follows from the knowledge of exponent assumption. �

6 Acknowledgements

* We thank Amit Sahai for helpful discussions.

References

[1] MS Windows NT kernel description. https://codaprotocol.com. Ac-
cessed: 2019-04-15.

[2] Sean Bowe and Ariel Gabizon. Making groth’s zk-snark simulation ex-
tractable in the random oracle model. Cryptology ePrint Archive, Report
2018/187, 2018. https://eprint.iacr.org/2018/187.

[3] Jens Groth. On the size of pairing-based non-interactive arguments. IACR
Cryptology ePrint Archive, 2016:260, 2016.

8

https://codaprotocol.com
https://eprint.iacr.org/2018/187

	Introduction
	Notations and Definitions
	Constant-base-DL-proof BG18
	Proof of Security
	An Instantiation of DL Non-interactive Argument of Knowledge
	Acknowledgements

